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ABSTRACT

The goal of this thesis is to examine the methodology used in the Antisubmarine

Warfare Tactical Decision Aid (ASWTDA) in development by Sonalysts,

Incorporated of Waterford, Connecticut under Navy contract. ASWTDA is a

Computer Assisted Search (CAS) program which is designed as a tool to assist

platform, unit or force commanders afloat and ashore in making tactical ASW

decisions.

First, a Classical Computer Assisted Search program is described as a basis of

comparison for the methodology employed in ASWTDA. Then, the operations as

performed in ASWTDA are described, followed by a probabilistic analysis. In the

analysis sections, probabilistic support for the applied methodology is provided where

applicable, and conceptual problems and possible solutions are cited where
//
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I. INTRODUCTION

A. THESIS GOAL

The goal of this thesis is to examine the methodology used in ASWTDA from

a probabilistic standpoint. It is intended to provide probabilistic support for the

applied methodology where applicable and to cite conceptual problems and suggest

possible solutions where appropriate.

B. ASWTDA GOALS

ASWTDA is a tool to assist platform, unit or force commanders afloat and

ashore in making tactical ASW decisions. It is necessary that it support rapid

assimilation of data pertinent to the problem and needed in the decision making

proccss. ASWTDA is to be an aid in the Search and Detection phases of the ASW

prosecution effort during which the target's position is not known with sufficient

accuracy for weapon placement [Ref. 1: p. v]. Target localization and

weapon control is to be performed by existing, onboard fire control systems.

ASWTDA is a decision support tool to assist in the conduct of the following

[Ref. 2: p. 1]:

1. Large area environmental analysis

2. Large area search planning
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3. Resource allocation and management

4. ASW contact correlation and management

C. OVERVIEW OF ASWTDA OPERATION

ASWTDA begins operation at some problem start time with an initial target

location distribution and an assumed target motion model. ASWTDA then processes

data from negative search efforts, positive contact reports and target motion to

produce, at some future forecast time, a probability distribution for the target's

position. This data may then be displayed as a probability map showing regions

where target location is more or less likely, or it may be combined with

environmental ?nd sensor data to produce a map showing regions where target

detection is more or less likely.

D. ASWTDA BACKGROUND

The development of ASWTDA began about November 1988. Chief of Naval

Operations OP-71, AntiSubmarine Warfare Division, was named sponsor of the

program, NAVSEA 63-D3 was named program manager. OP-71 and NAVSEA then

named Naval Oceanographic Systems Center (NOSC) of San Diego, CA as Technical

Director, Naval Underwater Systems Center (NUSC), New London, CT as developer

and Naval Air Development Center (NADC), Warminster, PA as the laboratory for

independent verification and validation. [Ref. 3]
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It was felt that existing computer search aids were not adequate for the ASW

commanders and operators at sea. OP-71 established a fleet working group to

provide requirements for a new ASWTDA to meet the Navy's needs. A major goal

was to get the program to the fleet as quickly as possible. The development was to

be an evolving process with rapid prototyping and fleet feedback. In order to reduce

development effort, the program was to evolve from three previous efforts. These

were [Ref. 3]:

1. Integrated Tactical Decision Aid (ITDA)

2. Composite Area Search Evaluation (CASE)

3. Fast Frigate Integrated Sonar Tactical System (FFISTS).

The analysis performed in this thesis is based on the methodology as described

in Reference 1. This was the methodology in use as of November 1989. Due to the

nature of the development process of ASWTDA, the program may change greatly in

a short period of time. The reader must bear in mind that this is based upon dated

information and the program as analyzed is not necessarily what is being, or has been

delivered to the Navy for fleet use. As of this writing, a version of ASWTDA is in

place for at sea testing onboard the U.S.S. Cushing, the flagship of Destroyer

Squadron 31, an ASW squadron based in San Diego, California.
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E. ORGANIZATION

Chapter II describes a model of a classical Computer Aided Search (CAS)

program. This will provide the reader with a general background of the operations

performed in such a program and the notation used in the description of the

operations of ASWTDA.

In Chapters IV and V, the following specific areas will be addressed in this

analysis:

1. Data Fusion

2. Target Motion

Each chapter is broken down into two major sections. In the first section,

Methodology, a description is given of the mechanics of the operations involved, with

no attempt to discuss the reasoning behind the operations. In the second section,

Probabilistic Analysis an attempt is made to provide probabilistic justification for the

methods employed.
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II. COMPUTER ASSISTED SEARCH, A CLASSICAL MODEL

A Classical model of a moving target CAS program is a program which outputs

a probability map of target position at any time specified by the operator. The three

main elements of a Markoviar moving target CAS system are:

1. Prior Probability map of target Position

2. Model of Target Motion

3. Updates of the probability map for target motion and information received on
the target

Advanced programs of this type may also provide the user with search plan

recommendations.

A. PRIOR PROBABILITY MAP

In CAS applications, the geographic region of interest is always divided into an

array of cells. The target location is described by a probability distribution over these

cells. We will inriex the cells in the array with the subscripts ij: i= 1...N, j= 1...M; this

set of cells makes up the analysis aiea, S. Let Ej(t) be the event a target is in cell

(ij) at time (t) and define pjj(0)=P(Ejj(0)), ie. pjj(0) is the probability the target is

located in cell (ij) at tiine (0).

5



The prior probability map is constructed by assigning a number between 0 and

1 to each pij at time t=O such that:

N Mt
Pip() = 1. 0(1

This distribution is called the "prior probability map of the target", frequently referred

to simply as the "prior". If the operator has no information about target location, the

prior may be simply a uniform target distribution.

B. TARGET MOTION MODEL

Target motion must be described in probabilistic terms because of the

uncertainties involved with the motion. A common motion model that is used is the

Markov-chain model. The target location is known as the state of the target. Some

proportion of the probability moves from each cell to the others in each time step,

as determined by a transition matrix, Q. The Markov-chain model contains no target

history other than what is contained in the state. Thus the cell probabilities change

at a given time based only on the information available in the cell at that time (the

definition of a Markov process) [Ref. 4: p. 211.

C. PROBABILITY MAP UPDATING

1. Search Information

Search information may be of two types: 1. Negative information: search

is performed, but no target was found. 2. Positive information: a report on target

6



position resulted from search. For our purposes, local sensors (sonobuoys, towed

arrays, etc.) provide only negative information. If target detection occurs by these

sensors, the problem is one of localization and is no longer a wide area search

problem of the type addressed by ASWTDA. Positive information may be obtained

from a long range type sensor, e.g. SOSUS, which does not provide a target position

with sufficient accuracy for target localization without further search.

Updating for search information is done by application of Bayes' theorem.

Let I(t) be the event that some information has been received about the target at

time (t). Assuming that P(I(t) I Ej(t)), i.e., the probability that information I(t) is

received, given the target is in cell (ij) at time (t), is known for all ij, the target's

position distribution can be modified on the basis of receipt of this information.

These probabilities are based on models of search effectiveness for all types of search

performed in the analysis area. The target distribution is modified as follows

[Ref. 5: p. 65]:

P(1(t) I Ej(t)) P(EijO )P(Ej(t) 1 I(t)) = -(2)
1: P(1(1) Eijt))P(Zijjt))

a,jeS

Note that P(Eij(t) I l(t))=P(EJ(t)) when P(I(t) Eij(t)) is independent of (ij). This

is commonly assumed to be the case when I(t) is "null", i.e., no information is

received.

For the purposes of this paper, information is received about the target at

discrete times At apart. These times will be denoted by t,t+1,t+2,.... Let:

7



p, jt) = P(E, jt)1(,.,(- ) (3)
pj(t = P(Ejt I),.J

Equation (2) becomes:

p, (O = P(I(t Eijt))pjO
- P(I(t) I Ejt))p((t)

jes

This requires an assumption about independence, however. Note that the pij(t) are

actually conditional probabilities, with the condition being the information history

Ht= (I(0),...,I(t-1)), prior to receipt of I(t). Thus pij(t)=P(Eij(t) I H,), and the problem

is to calculate P(Ej(t) I I(t)H3. Bayes' theorem is actually:

P(EUjt) IHl(t)) P(l(t) IHt Ejt))P(Ejt) IHr)P(H,) (5)EP(I(t) I Ht E jt)) P(E,, t) I Ht)P(Ht)
ides

where P(HEi(t))=P(Eij(t) H,)P(H,). We can then cancel P(H,) and Equation (5)

becomes:

P(Ejt) Ht 1(t)) = P(1(t) I Ht E1j(t))pjj(t)
E P(I(t) I HI Ej(t))pj(t)

which is equivalent to Equation (2) if it is true that P(I(t) I HEij(t))=P(I(t) I Eij(t));

i.e., conditional on target location being given, I(t) is independent of H. This

assumption is implicit in the repeated application of Bayes' theorem, i.e., each new

piece of information must be conditionally independent of past information. This is

usually a reasonable assumption, with the exception of systems such as SOSUS, which

8



gives frequent reports that are correlated, even when target position is given.

[Ref. 6: p. 7]

2. Target Motion

In the Markov-chain model, the motion update requires an update of the

target probabilities in each cell. Given that a target is in cell (ij), it may, in a given

time interval, remain in cell (ij), or transition to another cell in the analysis area.

Associated with each cell (ij), is a transition matrix, Q, which describes target motion

from cell (ij) in one time step. Let Q(i,j I m,n) be P(Eij(t+l) 1 E,,n(t)). Then,

assuming Markov target motion [Ref. 4: p. 240]:

pjt+1) = E p,,,(t)Q (ij I mn) (7)
neS mes

Thus, as the notation is used here, pij(t+l) is obtained from p+ij(t) by

application of the transition matrix, Q, for target motion during the time interval (t)

to (t+ 1). p~ij(t) is obtained from pij(t) by application of Bayes' theorem for

information received at time (t). The sequence of computations thus goes: p(O),

p+(0), p(l), p+(1), p(2), etc.

In principle, the target state may be much more complex than simply target

location. It may contain other properties such as target course, depth, motion model,

time, etc. The transition matrix, Q, would then contain transition probabilities for

each of these state.; to every other possible state. This more general notation will not

be used in this thesis however, because the state in ASWTDA consists only of

position.

9



III. TERMINOLOGY AND NOTATION

A. TERMINOLOGY

ASWTDA performs analysis within a geographic region with location and size

specified by the operator at the beginning of the session. The region is a square

ranging from 100 to 500 Nautical Miles on a side. This region, known as the Analysis

Area, is then fixed and may not be changed without problem re-initialization. This

analysis area is subdivided into a grid of 1764 (42 by 42) square cells. Thus, cell size

dimensions range from 2.38 to 11.90 nautical miles. Target location is maintained in

ASWTDA as a probability distribution over the cells.

ASWTDA maintains two target density matrices:

1. Area Clearance Density Matrix

2. Primary Target Density Matrix

The purpose of the Area Clearance target density display is to illustrate target

density in the absence of target detection. It is a display to be used primarily for

determining regions which have been searched and sanitized, thereby containing a low

probability of a submarine threat. These are areas into which the operational

commander may safely send vulnerable forces.

The Primary Target density display shows the Primary Target density at any

time after target detection has occurred. This is intended to be the display to which

10



the operator focuses his attention following target detection, although the Area

Clearance display may be monitored for the reasons stated above.

The operator may also view a combined density display which is formed from

the sum of the Area Clearance and Primary Target density matrices and is calculated

at the time of display.

B. NOTATION

Each density matrix is described as a 42 by 42 cell array with ACjj representing

the probability density for a particular cell in the Area Clearance matrix, and PT.. the

probability density for a cell of the Primary Target density matrix.

For a matrix X, the norm, I X I, is defined by:

x I - Fj (8)

(ij)CS

Also, the product XxY for matrices X and Y is a multiplication on a cell by cell basis

of the values of Xj and Yj, rather than the matrix product of Linear Algebra.

The notation as described in Chapter II with regard to information and position

updating will be utilized for describing the operations through time on the target

density matrices.

For any two events x and y, when these are listed together in a probability

statement, the meaning is (x and y), e.g., P(xy)=P(x and y).

11



IV. DATA FUSION

A. METHODOLOGY

The target density matrices are updated for information at 6-minute intervals.

This update occurs at the end of each 6-minute period. At each update, the negative

effects of all search efforts are incorporated, then diffusion due to target motion is

applied.

ASWTDA incorporates negative information from three types of acoustic

search: sonobuoys (single sonobuoys and sonobuoy fields), search tracks and search

areas. A search track is used when the sensor platform's track is known with

reasonable accuracy. A search area is used when a bounded region is assigned to a

search platform, but the platform's motion within the region is not specified.

[Ref. 1: p. 53]

1. Updating Target Density for Information

a. Prior to Receipt of Positive Information (t <t)

On problem initialization, ASWTDA assumes a single target is

distributed uniformly over the analysis area, thus pjj(0)= 1/N for all non-land cells,

where N is the number of non-land cells within the analysis area, S. Prior to receipt

of positive information on a target, this probability distribution is contained entirely

within the Area Clearance target density matrix, thus ACij(0)=pij(0) for all (ij)ES,

and the Primary Target density matrix is initialized to 0, so, PT1j(0)=O for all (ij)ES.
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Let 1(t) be the event that no target detection occurs between times

(t-1) and (t). For a position update at time (t), the cumulative probability of detection

for each cell over the six-minute time interval from (t-1) to (t) is calculated based on

all search efforts in progress during the time interval from (t-1) to (t). These

calculations are based on search models for each type of search and incorporate

environmental data as well as data about the sensors themselves. Let

Pnij(t)=P(I(t) I Eij(t)), i.e., Pnij(t) is the probability that no detection occurs in cell

(ij) during the time interval (t-1) to (t), given the target is in cell (ij). The Area

Clearance target density matrix is then updated by applying Bayes theorem to all cells

as follows:

AC (t) = AC(t)xPn(t) (9)
AC(t) xPn(t)I

b. Upon Initial Receipt of Positive Information (t=t)

ASWTDA assumes that the target distribution based on the positive

information can be described by a bivariate normal distribution. Let B represent this

bivariate normal distribution. This distribution is discretized into the same size cells

as used in the ASWTDA analysis area and probability values are assigned to the cells

according to the amount of the bivariate normal density encompassed by the cell.

The discretized bivariate normal density will be denoted BD. Note that BD extends

infinitely in all directions, whereas S covers only a finite area.

This target distribution is assigned a confidence factor (cf), currently

set at a value of 0.8 but designed to be an operator assigned value in future program

13



releases. The discretized bivariate normal distribution is renormalized so that

I BD =cf. The confidence factor is intended to be representative of the input

distribution as a whole and not a function of any individual contact reports used to

generate the input distribution. [Ref. 1: p. 74]

As a result of this positive information, PTij(t0)=Bij for all (ij)cS,

provided the cell does not fall on land, in which case it is assigned a value of zero.

The distribution contained in

PT(t0) then is that subset of BD

Analysis Area
which is contained in S as

illustrated in Figure 1. Let

pr= I PT(to)I. pr will be

dependent upon the amount of

BD which falls within S, not ona -

land mass. In all cases, pr<_cf; ij

for example, for the case

illustrated in Figure 1,pr--cf/2. BVN Ellipse

The following Figure 1 Bivariate Normal Distribution Overlaid
on Analysis Area, S.

operation is then performed to

fuse the previous negative information with this positive information:

pT (to) =prx(AC+(t°)xP7(t))) (10)
14c'td = - (10

14



2. Subsequent to Receipt of Positive Information (t>to)

For each six-minute time interval, negative search information is

incorporated into the Area Clearance density matrix using Equation (9) and the

Primary Target density matrix using Bayesian updating in the same manner as

follows:

PT(t) = PT(t)xPn(t) (11)
IP7~t)xPa(t) 1

3. Updating Target Density for Further Positive Information

Currently, additional positive information may be treated in one of two

ways:

1. The new report may be incorporated into the Over the Horizon-Maneuvering
Target Statistical Tracker (OTH-MTST) input data set to produce a new
initial target distribution.

2. The contact report may be used as the goal of a constrained random walk
scenario, with a past report as the initial distribution for the scenario. In this
manner, several reports may be incorporated in a series of constrained
random walks.

B. PROBABILISTIC ANALYSIS

As described above, negative information is incorporated into both target

density matrices according to Bayes' theorem. It can be shown that the initial positive

information is also incorporated in a Bayesian manner if certain assumptions are

made about the received information, and the target is assumed to have followed the

motion model of the Area Clearance target prior to the information update.

15



Specifically, if at time (to), it is true that the distribution of the Primary Target is

equivalent to the distribution of the Area Clearance target, and pr= 1, then Equation

(10) is a proper application of Bayes' theorem.

There are two issues that arise, however:

1. Why is the distribution of the Primary target equivalent to the distribution of
the Area Clearance target prior to the positive information update?

2. Why ispr* 1?

These issues will be discussed in Chapter VI.

Further positive information, however, is not incorporated in a Bayesian

manner. Either of the methods mentioned above which may be utilized to

incorporate this further positive information results in a change of the Primary Target

motion model.

It is possible that, given more than one possible target motion model, receipt

of positive information may alter the probabilities that we assign to each of these

models. In other words, we change our belief as to what the Primary Target is, and

has been doing, based on this information. This is an important point in that the

target motion prior to the receipt of the positive information must also be taken into

account. This is not the case in ASWTDA. Based on receipt of positive information

at time (to), the Primary Target changes its motion model, i.e., at time (to), the

Primary Target distribution is dependent upon the Area Clearance target motion

model prior to time (to). For t>t, the Primary Target then follows an entirely

16



different motion model. The Primary Target can not be expected to aLtually alter

its motion based solely on the receipt of information on the target, unless it is

believed that the target is reacting to our search efforts.

17



V. TARGET MOTION

A. METHODOLOGY

ASWTDA models target motion using a Markov-Chain approach. Note that

in the general notation of Markov motion as described in Section II.C.2, the transition

matrix, Q, is a 1764 by 1764 matrix, i.e., it describes the probability of transition from

any state to any other possible state. In ASWTDA, however, the target is limited to

traveling at most one cell length. This requires a much smaller transition matrix,

specifically a 3x3 transition matrix, qij, for each cell (ij)ES. This transition matrix

describes target motion from that cell during any single motion time interval. A

portion of the cell's target density remains in the original cell; the rest is distributed

to the adjacent eight cells. [Ref. 1: p. 231

1. Area Clearance Target diffusion

ASWTDA assumes that a target associated with the Area Clearance

Display moves about randomly. The transition matrix, q Ac, associated with this

motion is shown in Figure 2. This transition matrix is applied to every cell within the

analysis area, thus the lack of the ij subscript. The transition matrix coefficients are

fixed, regardless of cell size or target speed.

The transition matrix coefficients were calculated as follows: [Ref. 1: p. 26]

1. Build a 3x3 matrix of 9 square cells.

18



2. Populate the center cell with
1,000,000 uniformly distributed
points.

3. Move each point one cell-length b c b
in a random direction (from 0 to
360 degrees). c a c

4. Count the number of points in
each of the 9 cells.

5. Normalize the final distribution b c b
of points and adjust to ensure
symmetry. a=4.4939999E-2

b=7.9482503E-2
At each diffusion iteration, c=1.5928250E-1

the target density is re-computed using Figure 2 Area clearance Transition Matrix

a temporary density matrix. Let the

temporary matrix be called T. The transition matrix is applied as follows:

1. Zero the temporary matrix, T.

2. For a cell (ij) of the Area Clearance density matrix, AC, multiply each of the
values of the transition matrix, q, by ACij .

3. Add these values to the matrix T. Thus, the density from cell (ij) is
distributed in cell (ij) and its eight surrounding cells in matrix T. (See
Figure 3)

4. Repeat for every cell (ij).

5. Replace AC with T.

6. Repeat the process if more transition matrix applications are required.
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At edge and corner cells, any density

that would diffuse out of the analysis area is

retained in the original cell (ij). At land - -- AC1

boundaries, any density that would diffuse

onto land is distributed into cell (ij) and its
Application of

immediate surrounding non-land cells. Note Tranltion Matrix

that analysis area boundary and land effects bAq,11 cAq bAC_4

do not change the transition matrix qAC, but cAq, ACIl cAq.

are accounted for at each application of qAC. bAq, CAqj bAq,

We will use the following compact notation
a 4b.4c-1

to represent this:
Figure 3 Application of Area
Clearance Transition Matrix

p(t+1) = P*(t)*q (12)

Because the coefficients for this matrix are fixed, the Area Clearance target

transition matrix is applied using Equation (12), an irregular number of times per six-

minute time interval, determined by target speed, mean time on a given course and

cell size. In this discussion, an iteration is one six-minute interval, while an application

of the transition matrix refers to a single use of equation (12). This update occurs

as follows [Ref. 1: p. 26]:

1. Calculate R86, the radius, in nautical miles, which contains 86 percent of the
target density. For a given target speed (V) in Kts., mean time on a given
course (1) in hours and length of time (T) in hours, R86 is approximated by:
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R86 = 2 V2X (• P-+ min(l.0,0.707+0.293T/31)

2. Calculate the number of transition matrix applications, n, that would produce
an R86 equal to the R86 approximated by the calculation in step 1, where:

(R861Cell Length)2  (14)

2.45

3. Since n may not be an integer value, the calculated value is rounded to the
nearest whole number. If the required number of transition matrix
applications for the current problem time (total time from t=O to time t )is
greater than the number of applications performed as of the end of the
previous iteration, then the diffusion process is called and the transition matrix
is repeatedly applied using Equation (12) until the number of applications
performed equals the required number of applications computed in step 2.

2. Primary Target Diffusion

For Primary Target displays, a unique 3x3 transition matrix is calculated for

each cell within tle analysis area. These transition matrices will be denoted by q PT .

These matrices are calculated by performing a Monte Carlo simulation using 2000

tracks originating from a specified initial target distribution, and proceeding through

an anticipated target motion scenario. Land avoidance is performed in the process

of the Monte Carlo simulation thus preventing the Primary Target from diffusing

onto land. As a given Monte Carlo track proceeds, the transition matrix building

subroutine keeps track of the number of transitions from any one cell to an adjacent

cell in the matrix at intervals of dt, given by:
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SCell Length (15)
(Average Target SpeedXCos(6))

where 6 is the difference from

the average target course to the

nearest cardinal heading, so

-7r/4< 6<6</4. The cosine term is

used because it was determined

experimentally that a target on a 4

diagonal course tended to diffuse 2,1 2,2 __

too quickly in actual application.
1,2

The simulation process is V 2w WwW~w foe

ml (1.1)Wft vw oI ~folon VakM

illustrated in Figure 4. There is
o

a 3x3 matrix associated with each 0 0 1
0 0 0

of the cells in the upper matrix.
off in Figure 4 Simulation of One Track for Primary

The target track is marked Target Diffusion

numbered intervals of dt. Thus

after completion of this track, the 3x3 matrix for cell (1,1) would contain the numbers

shown in the matrix at the bottom. Because dt is calculated using the average target

speed, it is possible that the target may travel farther than one cell length in a time

step dt, this is illustrated in time step 8 of Figure 4. If this occurs, a count is placed

in the nearest adjacent cell. The simulation then continues from the actual simulated

position. After all 2000 tracks have been generated, the cell counts for each 3x3
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matrix are translated into transition probabilities. This is performed by replacing

each cell of the 3x3 transition matrix with the number of counts in the cell divided

by the total number of counts in the 3x3 matrix.

This set of transition matrices is used until additional positive information

is received or the target motion scenario is modified, at which time a new Monte-

Carlo simulation is performed and the transition matrices are re-computed. The

Primary Target transition matrices, q PTj, are applied using Equation (12) at regular

time intervals equal to dt as calculated in Equation (15).

B. PROBABILISTIC ANALYSIS

1. Area Clearance Target Diffusion

The model that ASWTDA assumes for the Area Clearance target is that

of a Random Tour. Under this model, the target is assumed to move at constant

speed, but to make course changes at random times. Each new course is chosen

from a uniform distribution on [0,21r]. The random travel time between course

changes is assumed to be drawn from an exponential distribution. Each new course

and time on course are assumed independent. Note that this is not the same as a

diffusion process, which is not a constant velocity process.

ASWTDA uses the results for a diffusion process to approximate the

random tour. This approximation is based on the fact that the variance of the

diffusion process has the same functional form as E[R 2TI, the mean squared radial

displacement of a randomly touring target [Ref. 7]:
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E[R -- 2 e( I - +1

Furthermore, for the diffusion model, the target at all times has a circular normal

distribution with mean p=0 and a2 =V2E[R 2 T]. For a circular normal distributiun,

R2T/2a 2 has a unit exponential distribution for which 86 percent of the density is

contained within 2a. [Ref. 5: p. 312]. For the random tour model, the normal

assumption holds only for large T. Therefore the correction factor for T/X.< 3.0 is

applied in equation (13).

It is possible, however, to derive an exact expression for R86. This is done

by integrating the probability density function of the particle's position at time t, given

by the formula:

g(x,y,t) = e for p<l (17)
271 X("')2 4-7p

where p-(x2+y2)/(VT) 2  [Ref. 8]. Setting up the integral and converting to

polar coordinates, for z<VT we have:

2x, z TT -( - --

P(RT!9Z) = f f rT e rdO (18)
o 6 27(VT) 2 .1-(r/Vl) 2

Integrating with respect to 0 and letting u=r/VT, du=dr/VT, =z/VT:
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P(RT:z) = f u e du (19)

Substituting the following:

V= U
2

dv u du (20)

d(i'_-2

we get:

T I - -V )

P(RTgz) = e dv
~/TI

= (iI )e 'vdv

- _1I (21)

= e V[fe teA

=11= - e t2;)<

The discontinuity at [ =1 is due to the fact that with probability e-T/ the target does

not change course, so there is a probability of mass eT/; concentrated on the circle

of radius VT.

We now solve for R862RR, the radius which contains 86 percent of the

target density for the random tour case:
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1-e 
= 0.86

Solving for E:

2(23)

;<21

where the integer 2 appears because -ln(1-0.86)=2. Therefore:

JR86% I= V2T72[1~(~A
(24)

= 4V 2WX T-4V 2  T ;T 2X
R862r = V2 2  T<21

In Order to relate R86 and the number of diffusion iterations performed

for the Area Clearance target, the developers of ASWTDA performed a series of

experiments by applying the Area Clearance transition matrix repeatedly and fitting

the data experimentally, obtaining the relation of Equation (14). Equation (14) can

be derived analytically however. Furthermore, it can be shown that the values for a,b

and c in qAC can be varied so that the number of iterations required provides for

more convenient application of the transition matrix.

First, we must show that the application of Markov target motion used in

ASWTDA produces an approximately circular distribution. Assume we have a target

at position (0,0). Let Xn be the horizontal position at time n. Then:
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x. = u (25)

where ui is the horizontal movement at time i. In ASWTDA, since the target may

move at most one cell length, uiE(-1,0,1) and, due to the symmetry of q AC its expected

value E[ui]=O. The variance, Var[ui]=E[u 2i]-E[ui]2=E[u2i]. Using the values of the

transition matrix, qAC:

E[u,) = ((-1)2 (2b+c)+(1) 2 (2b+c)) (26)
= (4b+2c)

Since the ui are independent and identically distributed random variables, by the

Central Limit Theorem, Xn is approximately normally distributed with mean

iux=E[Xn]=O and variance a2X=Var[Xn]=n(Var[ui])=n(4b+2c), for large n

[Ref. 5: p. 2891. The same derivation can be applied to the vertical position

r ,,. vi (2 7)

where v, is the vertical movement at time i.

Therefore, (Xn,Yn) is approximately bivariate normal with parameters

jU=AX=/y=O, and a 2=a 2X=a 2y=n(4b+2c). Furthermore, the covariance:

CoviX,,Y,] = E[X. Y,] - E[X, ]E[Y, 1 (28)
= E[XY, ]

where the (XnY,)c(-n 2 ,...,-1,0,1.n 2) with probability distribution

[p(-n2),...,p(-1),p(O),p(1),...,p(n 2)]. Because of the symmetry of qAc, we can see that:
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p(-n2 ) = P(X.=-n,Y=n)+P(Xn=n,Yx=-n)
= P(X=n,Y.=n)+P(X,=-n,Y,=-n) (29)

= p(n2)

Thus:

E[X.Y,] = (n2)p(n 2)+(-n 2)p(-n2)+...+
(1)p(l) +(- l)p(- 1) +(O)p(0) (30)

=0

Therefore, Cov[Xn,YIJ=0 so Xn and Yn are uncorrelated [Ref. 5: p.310]. The result

is an approximately circular normal distribution with mean 0 and variance n[4b+2c]

when n is large. Note that this is true independent of the values of a, b and c. The

important fact is that the transition matrix maintains horizontal and vertical

symmetry. For most central limit theorem applications, large n is taken to be greater

than 20. As an example, for a target speed of 15 knots, a mean time on leg of one

hour and a cell size of 5 nautical miles, we find from Equations (13) and (14) that

just over two hours would be required to meet this central limit theorem requirement.

We can now relate the number of iterations to the radius containing 86

percent of the target density, R86. The radius R=(X2n+Y 2n)v. Assuming the

requirements of the central limit theorem are met, Xn and Yn are Normally

distributed, and because the are uncorrelated, they are also independent. Thus Xn/a

and Yn/ are independent standard normal random variables, and:
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x~+y~(31)
2 2 a2

is approximately a Chi-Squared random variable with two degrees of freedom. As

discussed earlier, 86 percent of the density is contained within two standard

deviations, we will call this R 8 6 -.M, with the subscript TM representing the Transition

Matrix method. Let W=(cell width), then for large n:

-- (y)2
R8 Tw = (2 

(2
= n4(4b+2c) W2  (32)
= n(16b+4c) W 2

where R86.T is measured in nautical miles. For the values of a, b and c used in qAC,

this results in the relationship:

R862 = 2.54nW2  (33)

This is very close to the experimentally obtained relationship of Equation (14) used

in ASWTFDA.

In ASWTDA, the Transition Matrix method is matched to the random tour

by equating Equation (32) with 2E[R 2T] from Equation (16), even when n is small.

The method keeps a, b and c constant while making n be some integer other than the

number of information updates (recall that these updates occur at regular intervals

of A =6 Min.). It would be more convenient to make n the same as the number of
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information updates. If V is not too large compared to cell size, this can be achieved

using the exact expression of Equation (24) instead of the approximate expression of

Equation (13) by letting a, b and c depend on time. The crucial question is whether

the increment (16b+4c)W 2 from Equation (32) can be made as large as the increase

of Equation (24) in a period of length A. The slope of Equation (24) is at most 4V 2X

and the maximum value of (16b+4c) is 41, so the crucial inequality is 4V2 1A <4W2 .

Letting A=0.1 hour, we obtain the requirement:

V W -0 (34)

where V is measured in knots.

Note that for T>21, the slope of Equation (24) is a constant value of

4V 2X., therefore, a, b and c may be constant for T>21.

One can see from Equation (34) that there would be only few instances

where a greater number of diffusions would be necessary. For example, for a mean

time on leg of one hour and a cell size of five nautical miles, V<15.8 Kts. These

instances could be handled on a case by case basis, and n could still be made a

convenient integer value.

1 This occurs when b=0.25, i.e., all probability in the comer cells. Though it is
recognized that this would result in some cells being inaccessible, it is the limiting
case.
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2. Primary Target Diffusion

In ASWTDA, the transition matrices are such that the target may move

only as far as one cell with each application of q. This does not result in errors for

the Area Clearance target, but the method of calculating the time interval, dt, for

Primary Target diffusion, may result in some inaccuracy. For example, the Primary

Target may be going faster than the average speed, and therefore may travel farther

than one cell length in a time step dt, as illustrated in time step number 8 in Figure 4.

The transition for this time step can either be ignored, or, as is done in ASWTDA,

a count can be placed in the closest adjacent cell, inaccurate in either case. Thus

there is a tradeoff involved in the choice of d. Too large a dt results in the target

being able to go farther than one cell length, resulting in the situation just described;

too small a dt results in too few transitions to adjacent cells resulting in a high

probability of remaining in the center cell of the transition matrix thus requiring more

frequent application of the transition matrix, increasing computation time. In order

to prevent a target from traveling farther than one cell length, the appropriate time

step would be:

dt = Cell Length (35)
Maximum Target Speed

It is not intended here to state an optimum method of choosing dt, simply

that diffusion accuracy is dependent on this choice, which in turn depends on the

target velocity distribution, and, as shown by the need for the cosine correction term

in certain cases, on average target course as well. Note however that the average
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target course has no meaning when the variance in target course is large, with the

extreme case being a randomly touring target. This aspect of the problem warrants

further study. Of course, another way to prevent this error is to expand the transition

matrices, q, to say a 5x5 matrix. The tradeoff here would be an increase in both

computation time and storage requirements.
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VI. TARGET COMBINATION AND CREDIBILITY

A. TARGET COMBINATION

The question arises as to what specifically is described by the Area Clearance

and Primary Target density matrices and the operations performed. Two elementary

models are presented here, these are: 1. A single target which may be of one of two

types, 2. Two separate targets. An attempt will be made in Section 3 to match each

of these models with the operations performed in ASWTDA. This is not intended

to represent all possible target models, merely two that were chosen, that have a

sound probabilistic basis, to attempt to understand the operations of ASWTDA.

1. Single Target

In this scenario, it is known that there is a single target within the analysis

area at time t=O, but it is not known of what type. Assume the target is of one of

two types, a or b, and we presumably have some knowledge of the a priori probability

distribution of target type. Furthermore, it is known that the type a target remains

within the analysis area, and the type b target may leave the area and not reenter.

For this scenario:
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AIt) = P(E4 /r) and a I,)

Aijt) = P(E1,,t) and a H,j(t))
B~j(t) = P(Ejj(t) and b IHt) (36)

B~j(t) = P(Ej(t) and b IHI(t))
C(t) = P((outside S) and b I H,)

C (t) = P((outside S) and b HI(t))

so I A(t) I =P(a I H,), likewise for target type b, and I A(t)+B(t) I +C(t)=1.

There are two separate motion models involved described by the following

transition matrices:

Qa(i,jlm,n) = P(Ej(t+ 1) and alE.,l(t) and a) (37)
Q (ijlm,n) = P(E~j(t+I) and blE,.,(t) and b)

Thus:

A(tl)= A*(t)*Qa (38)

B(t+l) = B )(tQb(3

and C(t+ 1)= 1-IA(t+ 1)+B(t+ 1)I.

These matrices may be updated for received information using Bayes'

theorem as follows:

P(l(t) E~j(t) a H,) P(Eij)a IH,)P(E1j(t) a I H,I(O) = (~) ,
P(I(t) Ht)

P(Ejt) b H(t)) = P(I(t) Ejjt) b H) P(Ej(t) b H,) (39)
P(t(t) IH)

P((outside S) b HtI()) P(I(t) I (outside S)bH,) P((outside S) b I H,)
P(I(t) I H,)
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As discussed in Section II.C.1, we would expect to assume that

P(I(t)lEij(t)Ha) and P(I(t)lEij(t)Htb) are both independent of Ht, but the

nondetection probability may still, in principle, depend on target type.

To simplify notation, the following are defined:

ai.ft) = P(I(t) I EU(t) aHt,)

bj(t) = P(J(t) IEjt)bH,) (40)

c(t) = P(I(t) I (outside S)b H,)

Thus, Equations (39) become:

P(I(t) IHt,)
B, -f1t)B. ft) (41)

Pff(t) I H,)

and since:

P(I(t) H)= [aijt)A 4(t) b Bj(tjt) + c(t)C(t) (42)
ijes

we can see that IA+(t)+B+(t)I +C+(t)=1.

2. Two Separate Targets

In this model, there are two targets, one, a type a target is in the analysis

area, and the other, type b, possibly outside the analysis area. For this model, the

following are defined:
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ALjt) = P(Ej0I jaH,)

A,;(t) = P(EIt) I aHI(t))
B.jt) = P(E (t) lbH,) (43)

B,.jt = P(E(t) I bHI(t))
C(t) = P(outside S I bH,)

C (t) = P(outside S lb H, (t))

Motion updating is equivalent to that for the single target model.

The density matrices are updated for received information using Bayes'

theorem as follows:

P(l(t) I E3jt)aH,) A (t)

A P(I(t) E(/t) aH,) A,($t)

ides

= P(I(t) I Ej(t)bH.) Bajt) (44)

E [P(l(t) E1j(t) b H,) Bjt)] + P(I(t) I (outside S)b H,) C(t)
ijes

C+() = 1 - IB'(t)1

3. Analysis

a. Single Target Model

To compare the operations performed in ASWTDA with the single

target model as described above, we must make an assumption about the meaning

of the target density matrices. Let TAc and TPT be the events the target is of type

Area Clearance and Primary Target, respectively. We will assume the following:
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ACjjt) = P(E1j(t) TAC I Ht) (45)

PTj(t) = P(Ej(t) T I Ht)

Note however from Equations (9) and (11) that following an information update,

I AC*(t) I = I PT*(t) I= 1. ASWTDA then performs an additional operation to form

what we will call AC (t) and PT (t), which is a renormalization of the density

matrices such that:

AC (t) = AC (t) I AC(t) 1 (46)

P''*() = PT+(t) IPT(t) I

In the notation of the previous section, this is equivalent to:

Ai() = ai'j(t)Ai"j(t) JA() I
I a(t)A(t) 1 (47)

b. .Qt)B. .)(t)B+ (t) = "t) j I B(t)i,j b(t)B(t) I

These equations must be compared with the results of Equations (41).

Using the very simplified, two cell example shown in Figure 5, these are clearly not

equivalent calculations. Furthermore, although Reference 1 states that the Primary

Target may leave the analysis area, following the target motion update, the Area

Clearance matrix is again renormalized such that I AC I = 1- 1 PT I. This is a deviation

from the single target model in that, following each motion update, C(t)=O. So,

rather than leave the area, the target type shifts to an Area Clearance target.

ASWTDA also handles positive information differently than negative

information. As discussed in Chapter IV, PT(t)=O for t<t0 . Thus, the Primary
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Target distribution is based on
a b

Area Clearance type motion for 0

t<T0 , and Primary target motion M 0.5 0

for tt 0 . This too is a deviation P(l(t) a(1))-P((t) b(1))-I
P(l(t) 6(2))=P(l(t) lb(2))=0

from the single target model and
Using Bayesian Updating

results in an inaccurate Primary )0

Target distribution to a degree 1 0 0 0
ASWTDA Update Method

that is dependent upon the (1)

t 0.5 0 ? ?
difference in the motion models

Undefined
and the elapsed time from t=O

to t=t0.
Figure 5 Comparison of Bayesian Update and

As can be seen ASWTDA Update Methods

from Equations (39), both positive and negative information can be handled equally

well using Bayes' theorem, provided the appropriate probabilities are known.

It is conceivable that receipt of positive information may alter the

distribution of target type. This is properly handled by Equations (39). For example,

if we make the assumption that some received positive information, I(t), could not

possibly been caused by target type a, in Equations (39), P(I(t) I Eij(t)aH,)=0 for all

(ij), thus P(Eij(t) I HI(t))=0 for all (ij), and all probability is assigned to target type

b. In order to perform this operation properly in ASWTDA, it is necessary that the

density matrix for the Primary Target be nonzero for t<t0 , otherwise P(I(t) I H,)=O

which results in division by zero.
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b. Two Target Model

To compare ASWTDA with the two target model, we must assume

the target density matrices are defined as follows:

ACt) = P(E(t) J AcHt)

AC11t) = P(E1,/t) I TACHtI(O) (48)
PTjt) = P(E4 (t) TpHt)

PTj(t) = P(EU(t) l TpTHJ(t))

The two target model clearly is not what is intended in ASVTDA,

because, as stated in Reference 1, "...each of the density displays represents position

information for the same single target [Ref. 1: p. 9]". This is further reinforced by

the fact that, following each information and motion update, ASWTDA adjusts the

density matrices such that I AC I + I PT I = 1

4. Modifications to Comply With a One or Two Target Model

Changes may be made to ASWTDA so that the operations conform to

either of the two motion models described above.

In order to conform to the single target model, the following changes must

be made:

1. Maintain a Primary Target density matrix from time t=O, which follows the
motion model that is believed to describe the Primary Target. If the motion
model for the Primary Target is unknown, multiple possible scenarios could
be initialized at t=O. Then, at t=t o, the probability of each of these scenarios
being the true motion model can be assessed. Another option is that upon
receipt of positive information, a Primary Target motion model may be
developed and started from t=O to calculate a density PT(t0).
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2. Initialize the Area Clearance and Primary Target prior distributions
independently to what is believed, a priori, about the individual targets. If it
is known that there is one target in the analysis area, then
(AC(O) I + I PT(O)I =1.

3. If the definitions given in the single target analysis section above are what is
intended in ASWTDA, then updating for information should be performed
using Equations (41).

4. As the Primary Target diffuses out of the analysis area, the Area Clearance
matrix should not be renormalized to include this lost target density.

5. Since the operator is concerned about a single target, his attention should be
focused on the combined target density, which is the best knowledge available
on the single target.

If the intention in ASWTDA is that there are two targets, then in order to

conform to the two target model, in addition to number 1 above, the following

modifications must be made:

1. Initialize the Area Clearance and Primary Target prior distributions
independently to what is believed, a priori, about the individual targets.
Following the two target model, I AC(O) I = 1, and I PT(O) [ < 1.

2. As the Primary Target diffuses out of the analysis area, only the Primary
Target density matrix should be affected. Therefore I PT(t+ 1) 1 1 PT (t) I
whereas IAC(t+1)1 = IAC+(t)I =1.

3. Update the target density matrices for information using Bayes' theorem of
the form of Equations (44).

4. The density matrices should not be combined into a single target density
matrix as they represent two separate targets.
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B. CREDIBILITY

1. A Proper Application of Credibility

A decision aid must account for the fact that the emissions which resulted

in the positive information report may have come from a target different form the

target of interest. This may be as simple as assuming that it does not occur. Let T

be the event the emissions are caused by the target of interest, let I(t) be the event

a positive report is made, and assume the following data are known:

aciat) = P(I(t) TI Ejt)) for all (iQ)eS

Ojj(t) = P(I(t) TC I Ej(t)) for all (if)eS (49)
y(t) = P(I(t) T I outside S)
n" (t) = P(I(t) T" I outside S)

Thus I(t)Tc is the event that a report is made and the target of interest is not the

cause, and a1j(t)+PGi(t)=P(I(t) I Ei(t)), where P(I(t) I Ei(t)) is discussed earlier in

Section II.C.1. By the definition of conditional probability:

P(I(t) T I Ea(t)) P(E F#)) P(I(t) TC I E1,$t)) P(E, (t)) (50)

Note that P(I(t)) can be written as follows:

P(I(t)) - P((r) T)
P(TII(t)) (51)
P(I(t) Te)

P(TC 1(t))

Letting pi(t)=P(Eij(t)) and P(t) be the matrix with elements pi(t), and letting a(t)

be the matrix with elements ati(t) and O(t) the matrix with elements fij(t), Equation

(50) can be written:
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P(Ei/t) I I(t)) =P(I(t)T I E$t)) P(E.,(t)) P(rII(f)) P(I(t)T I Ej(t)) (Ejj()) P(T11(t)) (52)P( t)[(t) P(IQt)7) P((I(O (T)Tct) 52

(Tit(O)+ i) ' I I(t))=I aW z)PWtI+YMU(- IP( I (OP+l(1(t)(- P(TC 1()

Let P(TI 1(t)) be an input called credibility, C. If we assume /id(t)=fl for

all (ij) and all t, i.e., if l(t) is not caused by the target of interest, it does not matter

where it is located, and if we make the further assumption that y(t)=i7(t)=O for all

(t), i.e., we can not possibly receive a contact report if the target is outside S, even

if the target is not the cause of the report, Equation (52) becomes [Ref. 6: pp. 8-9]:

P(Eijt) II(t)) = I p I) C + p.(t)(1-C) (53)

In other words, the posterior probabilities are an average of the prior probabilities

(with probability (I-C)), and the posterior probabilities that would hold when C= 1

(with probability C).

2. Credibility in ASWJTDA

It is difficult to determine what is implied by the use of the confidence

factor, cf, in ASWTDA. This is in part due to the fact that it is not clearly defined

what is described by the Area Clearance and Primary Target density matrices. An

attempt will be made to fit the above model, however, based on the single target

model.

Let T be the event the emissions which resulted in the positive report were

caused by the Primary Target, and 1(to) the event that positive information is received

at time (to). One infers from Reference 1 that the confidence factor, cf=P(T I I(t 0)),
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i.e., cf is the probability that the received emissions were caused by the Primary

Target given the receipt of the positive information at time (to). For the analysis, the

following assumptions will be made:

1. BDij=P(I(to)T I Ej) for all (ij)ES.

2. C=P(T II(to)), i.e., C is the probability the emissions which resulted in the
positive information report were caused by the Primary Target, given the
receipt of positive information at time (to).

3. P(I(to)Tc I Ei(t 0 ))is constant for all (ij).

4. P(I(to)T Ioutside S)=P(I(to)T I outside S)=0

Equation (53) then becomes:

P(E Jt) and (Primary Target) I I(to)) = PJto) C + P,. (to)(- C) (54)

This is equivalent to Equation (10) with two exceptions:

1. The multiplication term, pr, used in ASWTDA is the confidence factor
reduced further by excluding that portion of BD which falls outside the analysis
area or on land. Thus the confidence of the report is dependent upon the
location of the analysis area in relation to the positive report.

2. The second term of Equation (54) is omitted altogether.

Thus we can see that, even given these assumptions about the target and

the received information, the use of the confidence in ASWTDA falls short of a

meaningful application of target credibility. This may be easily fixed by utilizing

Equation (54) in ASWTDA, use of which would correspond to making assumptions

1, 2, 3 and 4 above.
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VII. CONCLUSIONS AND RECOMMENDATIONS

In summary, there are four areas which need to be addressed in the continuing

development of ASWTDA to prevent possibly erroneous results. These are:

1. The number of targets in the system

2. Proper incorporation of positive information

3. Primary target motion prior to receipt of positive information

4. The proper use of information credibility

The question of how many targets there are and what is meant by an Area

Clearance target or a Primary Target has a profound affect on how the other points

are handled. This issue must be resolved prior to addressing further issues. Once

it is decided how many targets are being manipulated, it can be decided how the

target or targets are to move, and to which target or targets positive information is

applied. Also, it must be decided what is meant by the confidence factor in relation

to positive information, and to apply it properly.

Other aspects which may not significantly degrade the results obtained from

ASWTDA, but may affect the speed or simplicity of computation and overall solution

accuracy are use of the exact expression for R86 for a randomly touring target and

the adjusting of the values of a, b and c in the Area Clearance transition matrix so

that the diffusion of the Area Clearance target occurs at regular convenient intervals.

44



LIST OF REFERENCES

1. Sonalysts, Inc., AntiSubmarine Warfare Tactical Decision Aid (ASWTDA) Search
Methodology, Sonalysts, Inc., Nov. 1989.

2. ASW Tactical Decision Aid Users Guide, Version 1.02, Naval Sea Systems
Command, Code 63D.

3. Telephone Conversation between LCDR Eric Rosenlof, OP-71, Chief of Naval
Operations, Antisubmarine Warfare Division and the Author, 29 Jan. 1990.

4. Ross, S. M., Introduction To Probability Models, Academic Press, Inc., 1985.

5. Larson, H. J., Introduction To Probability And Statistical Inference, John Wiley
and Sons, Inc., 1982.

6. Washburn, A., Multiple Experts And Credibility In Search TDA 's, 1989.

7. Belkin, B., The Omstein-Uhlenbeck Displacement Process as a Model for Target
Motion, Daniel H. Wagner, Associates Interim Memorandum to Applied
Physics Laboratory, February 1, 1978.

8. Washburn, Alan, "Probability Density of a Moving Particle", Operations
Research, Vol. 17, No. 5, September-October, 1969.

45



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93940-5002

3. Chief of Naval Operations 1
Antisubmarine Warfare Division (OP-712)
Washington, D.C. 20350

4. Sonalysts, Inc. 1
Attn: John Jakacky
215 Parkway North
P.O. Box 280
Waterford, CT 06385

5. Alan R. Washburn, Code OR/Ws 1
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93940-5000

6. R. Neagle Forrest, Code OR/Fo I
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93940-5000

7. LCDR William Walsh, Code OR/Wa 1
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93940-5000

8. James N. Eagle, Code OR/Er 1
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93940-5000

46



9. Chief of Naval Operations (OP-81)
Washington, D.C. 20350

10. Metron, Inc.
1481 Chain Bridge Road
Suite 203
McLean, VA 22101

11. Daniel H. Wagner, Associates, Inc.
27 West Queens Way
Suite 301
Hampton, VA 23669

12. Daniel H. Wagner, Associates, Inc.
894 Ross Drive
Suite 205
Sunnyvale, CA 94089

13 LT Bruce R. Bjorklund
Submarine Officer Advanced Course
Submarine Base
Groton, CT 06349

47


